

25th International Iranian congress of nuclear medicine Celebrating the 65 year with nuclear medicine in Iran

TEHRAN®

ESPINAS
PALACE HOTEL

MAY 1-3,2025

DR.MOHAMMADALI GHODSIRAD

NUCLEAR MEDICINE SPECIALIST

ASSISTANT PROFESSOR OF NUCLEAR MEDICINE

FELLOW OF THE ASIAN NUCLEAR MEDICINE BOARD (FANMB)

FELLOW OF EUROPEAN BOARD OF NUCLEAR MEDICINE (FEBNM)

Introduction

- •Cardiovascular PET imaging is undergoing a significant transformation.
- •Recent advances improve sensitivity, specificity, patient comfort, and clinical applicability.
- •Focus on tracer development, quantification, hybrid imaging, AI, and personalized imaging pathways

Recent Data on Imaging Modalities (2022)

Imaging Modality	Number of Exams (Approximate)
SPECT MPI	1.3 million
PET MPI	212,000
Stress Echocardiography	202,000
Coronary CT Angiography (CCTA)	119,000
Stress MRI	4,000

PET MPI Studies:

- Increased by approximately 25% from 2018 to 2022.
- Reflects growing adoption due to advantages like higher diagnostic accuracy and lower radiation exposure.

SPECT MPI Studies:

- Remain more prevalent in total numbers.
- However, there's a gradual decline in usage, attributed to factors such as longer imaging times and lower image resolution compared to PET.

PET Radiotracers – An Overview

- Rubidium-82: Generator-produced, convenient but expensive.
- **N-13 Ammonia:** Excellent image quality, cyclotrondependent.
- O-15 Water: Gold standard for flow but short half-life, complex logistics.
- Move toward F-18 tracers for logistical and diagnostic advantages

Flurpiridaz F-18 – A Game Changer

- FDA approval in 2024.
- Binds mitochondrial complex-1, not flow-dependent like Rubidium.
- Longer half-life (110 min): centralized production and distribution possible.
- Superior resolution and stress imaging capabilities.
- Ideal for exercise stress PET.

- Developed by GE Healthcare.
- First PET MPI tracer developed specifically for SPECT-like operational settings.
- Improved image quality in overweight and female patients.
- Designed for stress-first protocols to reduce radiation.

Table 1 - PET tracers used for myocardial perfusion imaging

Tracer	Half-life	Production	First-pass myocardial extraction	Kinetics	Limitations
¹⁵ O-water	2.1 min	On-site cyclotron	100%	Diffusion	Requires cyclotron, complicated administration, sub-optimal imaging
¹³ N-ammonia	10 min	On-site cyclotron	80%	Diffusion/active transport	Requires cyclotron
⁸² Rubidium	72 s	Generator	70%	Na+/K+ cotransporter	Expensive, sub-optimal imaging
¹⁸ F-flurpiridaz	110 min	Centralized radiopharmacy	94%	Mitochondrial complex	Long half-time for same day procedure

99mTc SPECT Stress Rest ¹⁸F Flurpiridaz PET Stress Rest

fdg-

Myocardial blood flow (MBF) and coronary flow reserve (CRF)

- Clinical Applications of MBF Measurement
- Diagnosis of microvascular angina.
- Risk assessment in diabetes, obesity, CKD populations.
- Better guidance for revascularization decisions.

- PET uniquely enables absolute MBF and CFR measurements.
- Identify balanced ischemia critical in multivessel disease.
- MBF quantification linked to prognosis independent of anatomical severity.

Subgroup (n)	MBF rest (ml/g/min)	MFR (stress/rest ratio)
Age < 50 (30)	1.05 ± 0.23	2.66 ± 0.67
Age 50–59 (45)	0.99 ± 0.21	2.73 ± 0.69 ^a
Age 60–69 (73)	0.99 ± 0.22 ^a	2.66 ± 0.54
Age ≥ 70 (58)	1.08 ± 0.23	2.39 ± 0.56 ^a
1 more row • Khordad 21	1397 AP	

Myocardial blood flow quantification

- ❖ Patients without known prior history of cardiac disease who present with symptoms suspicious for myocardial ischemia;
- ❖ Patients with known CAD, in whom more specific physiological assessment is desired;
- ❖ Identifying an increased suspicion for multivessel CAD;
- ❖ Situations with a disparity between visual perfusion abnormalities and apparently normal coronary angiography, in order to assess possible microvascular dysfunction;
- ❖ Heart transplant when there is a question of vasculopathy.

PET/MRI – The Emerging Modality

- Superior soft-tissue imaging, absence of ionizing radiation from MRI.
- Better myocardial edema, fibrosis, scar characterization.
- Challenges: high cost, limited availability, long scan times.

Artificial Intelligence in PET Imaging

- Al now applied across PET imaging chain:
 - Motion correction.
 - Automated segmentation.
 - Quantitative analysis.
 - Risk prediction algorithms.

Contours and Segmented I LT

Diagnostic approach to suspected CAD

