Quality Control in PET/CT

Dr. Marzieh Ebrahimi

Assistant Professor in Department of Medical Physics & Nuclear Medicine Iran University of Medical Sciences ** Clinical Physicist in Rasoul Akram Hospital**

Introduction

- ✓ A robust QA/QC program ensures consistent scanner performance by verifying image quality, quantification accuracy, spatial resolution, and coregistration fidelity.
- ✓ It allows for early detection of equipment failures, supports standardization across sites, and ultimately ensures patient safety, diagnostic reliability, and regulatory compliance.

FIG. 10. Quality assurance and QC cycle for a medical imaging device (based on information from Ref. [26]).

IAEA HUMAN HEALTH S

Key QA/QC Concepts

Quality Assurance (QA): **Systematic** planned actions to ensure confidence.

Quality Control (QC): Operational techniques to fulfill QA requirements.

Acceptance **Testing** Done post-installation measurements to ensure vendor specs are met.

Constancy Testing Repeated over time to track performance. Ideally the scale should meet the following performance specifications:

Patient group	Recommended maximum scale interval
Adults	200g
Young Children	50/100g
Babies	10/20g SEFOMP

Table 2. Patient groups and related maximum scale interval.

Frequency of QC Tests

Daily

Startup checks, blank scan, visual inspection, calibration verification.

Weekly/Quarterly

Normalization, uniformity, sensitivity check

After Maintenance

Full status check Registration accuracy evaluation

References:

AAPM TG-126

IAEA

IEC

NEMA

EFOMP Guidelines

Table I: Periodic tests

Test	Daily	Weekly	Quarterly	Semi- Annual	Annual
CT QC	×				
PET QC	×				
PET Update Gains and Coincidence Timing		×			
PET Normalization			X ²		
PET Calibration			X ²		
Preventive Maintenance and Inspection				×	
Source Replacement					×
PET Spatial Resolution					×
PET and CT Registration			Χ¹		
PET Sensitivity					X ²
PET Count Rate Performance					X ³
PET Accuracy of Corrections					×
PET Image Contrast and Scatter/Attenuation Evaluation			×		
PET Image Uniformity Assessment					X ⁴
Image Display Monitor Evaluation (TG-18)					×
Emergency Buttons Testing					×
Synchronize System Clocks		×			
Addi	tional Daily Te	ests ⁴			•
Restart Computers	×				
Manufacturer-Recommended CT Warm-up Cycle and Calibrations	×				
Archive Patient Data	×				
Clear Scheduler	×				
Clear Local, Network, and Film Queries	×				

¹Or after the gantry is opened
²Or if a detector module is replaced
³Or if the electronic boards are replaced
⁴Philips recommends these tests to be done on a quarterly basis

Daily QC - PET

- ✓ Conducted before first patient scan after system initialization.
- ✓ Includes checks on detector blocks, gain, timing, and emission calibration factor (ECF).
- ✓ Visual inspection of sinogram or test image for artifacts.
- ✓ Pass/fail indicators guide corrective action.

Spatial Resolution Evaluation

- Capillary tubes of $\leq 1\,$ mm inside diameter and $\leq 2\,$ mm outside diameter
- Capillary tube positioning device
- 185–370 MBq/ml (5–10 mCi/ml) 18F-FDG

- 3- to 5-cc syringe
- 20- to 23-gauge needles
- Critoseal®
- CT contrast media (e.g., Optiray®)

placed at isoccitics and at our-center positions (10 cm).

	Table 4: PET spatial resolution evaluation record							
		FWHM	(mm)		Comp	arison		
Point Source Position (cm)	Line Profile	Center of FOV	I/4 or ¹ 3/8 of FOV	Average	Baseline	Percent Differenc e		
	Radial	1.41	1.53	1.47	1.52	-3.29		
(0,1)	Tangential	5.83	5.95	5.89	5.81	1.38		
	Axial	5.5	5.79	5.65	5.66	-0.27		
	Radial	1.88	1.96	1.92	1.87	2.67		
(0,10)	Tangential	5.83	5.7	5.77	5.	ALITA		
	Axial	5.55	5.85	5.70	:			
	Radial	1.78	1.83	1.81	1. Pss	URANCE		
(10,0)	Tangential	6.01	6.11	6.06	6.1	-0.66		
	Axial	5.82	5.96	5.89	5.88	0.17		
	¹ Cir	cle choice	for future i	reference				

PET and CT Registration Accuracy

Purpose:

Verify accurate alignment of PET and CT datasets to ensure correct attenuation correction and lesion localization.

Materials:

- •Same capillary tubes with CT contrast
- •Fusion software or DICOM viewer

Procedure:

- 1. Fuse PET/CT images in sagittal, coronal, and axial planes.
- 2. For each point source, calculate distance between PET and CT centroids.

PET and CT Registration Accuracy

Data Analysis:

•	Re	C	\mathbf{O}	r	(
-	170		$\mathbf{\mathcal{O}}$	T,	١

•Compa

Accepta

•PET-C

mm).

	Table 5: PET and	C1 registration eva	aluation record		
	Distance betwe	en PET and CT	Comparison		
Axial Position	Point Source	Dietem ()	Danalina	Damant Diffanon an	
	Position	Distance (cm)	Baseline	Percent Difference	
	(0,1)	0.04	0.04	0.0	
Center of FOV	(0,10)	0.063	0.061	3.3	
	(10,0)	0.06	0.058	3.4	
	(0,1)	0.05	0.048	4.2	
I/4 of FOV	(0,10)	0.052	0.05	4.0	
	(10,0)	0.063	0.06	5.0	

PET Sensitivity

- Innermost sleeve of NEMA PET Sensitivity Phantom:
 - ° 3.9 mm inside diameter (ID)
 - ° 6.4 mm outside diameter (OD)
 - ° 700 mm length
- Fillable plastic tubing:
 - ° I mm ID, 3 mm OD
 - ° 700 mm length

- 5.55-7.0 MBq (0.15-0.2 mCi) 18F-FDG
- 3- to 5-cc syringe
- 20- to 23-gauge needles
- Critoseal[®]
- Phantom positioning device (tension rod or equivalent)
- Level

		Symbol/			Isocenter			Offset		
St	ер	Calculation	Description	Scan 1	Scan 2	Scan 3	Scan 1	Scan 2	Scan 3	Units
		ti	Initial assay time	18:22	18:22	18:22	18:22	18:22	18:22	
Acti	vity	Ai	Initial assay activity	7379	7379	7379	7379	7379	7379	kBq
Calcui	•	tr [.]	Residual assay time	18:23	18:23	18:23	18:23	18:23	18:23	
Caicu	папоп	AJ*	Residual assay activity	5623	5623	5623	5623	5623	5623	kBq
		AT,i	Activity in phantom at ti	1756	1756	1756	1756	1756	1756	kBq
		ta	Time of start of acquisition	18:40	18:42	18:44	19:04	19:06	19:07	
		ts	Scan duration	60	60	60	60	60	60	S
		CP	Total prompt counts	381813	376877	373042	324617	321220	318769	cts
Ima	ige	CR	Random counts (=0 if unavailable)	43421	43297	42905	41439	41375	40675	cts

				Sensitivity	(cps/kBq)			Comparison				
	Source Position	Scan	1	Scan 2	Scan 3	Aver	rage	Baseline	Percer	nt Differ	ence (%)
	Isocenter	3.60		3.59	3.60	3.6	50	3.55		1.17		
1	0 cm Offs	et 3.50		3.50	3.50	3.5	50	3.45	1.54			
	Calculation	S = RT/AT,a		Sensitivity	3.597438014	3.591247586	3.5992470	2 3.501854263	3.504517397	3.5045991	cps/kBq	
						3.59597754			3.503656913			

Count Rate Performance & Accuracy of Corrections

- Right circular cylindrical phantom:
 - ° 20 cm diameter and ~19 cm length
- 700-750 MBq (~20 mCi) 18F-FDG

- One 3- to 5-cc and one 60-cc syringe
- 20- to 23-gauge needles

TIOUCUU I III GELECIUI DEIIAVIOI AL VAIIUGO ACTIVILY ICVEIO AIIG

validate system corrections (e.g., scatter, dead time).

☐ Materials.

Step	Description	Value	Units
Initial Assay	$\operatorname{Time}(ti)$	13:20	7
Initial Assay	Activity	711880	kBq
	Time	13:27	
Residual Assay	Activity	31376	kBq
,	Activity decay-corrected to ti	32782	kBq
	Total activity (at ti) administered	678950	kBq
Uniform Phantom	Total volume	6280	cc
	Activity concentration (at ti)	108.113	kBa/cc

Table 21: ACR phantom preparation dose record

Step		Description	Value	Units
Doses (Table 16)	Patient dose	•	12	mCi
	Dose A (for "Hot"	cylinders)	0.42	mCi
	Dose B (for Backgr	round)	0.99	mCi
	Initial assay	Time (tA)	15:39	
	7.55	Activity	0.22	mCi
	Residual assay	Time	15:40	
		Activity	0.00854	mCi
		Activity decay-corrected to tA	0.00859	mCi
	Bag (or bottle)	Total activity (at tA) administered	0.2114	mCi
"Hot" Cylinders	30730	Total volume	500	ml
(Dose A)		Activity concentration (at tA)	0.0004228	mCi/ml
	Initial assay	Time (tB)	15:47	
		Activity	1.03	mCi
	Residual assay	Time	15:48	
		Activity	0.0076	mCi
		Activity decay-corrected to tB	0.0077	mCi
	Background	Total activity (at tB) administered	1.022	mCi
	phantom region	Total volume	5400	mL
Background		Activity concentration (at tB)	0.000189259	mCi/ml
(Dose B)		Activity concentration (at tA)	0.000199043	mCi/ml

Ratio of "Hot" cylinder to background activity concentration (at tA) (target ratio = 2.15)

| Publication Plantain, CC | A | Shink Loyali, PCDC Code | Code |

Table 22: PET image contrast and scatter/attenuation correction evaluation (Adult Protocol)

			$\overline{}$	
	Background	Teflon	Air	"Cold" Water
Mean SUV	1.04	0.18	0.25	0.23
Minimum SUV	0.9	0.1	0.2	0.16
	25 mm "Hot"	16 mm "Hot"	12 mm "Hot"	8 mm "Hot"
Maximum SUV	2.23	1.95	1.62	1.21
Ratio to background mean SUV	2.144230769	1.875	1.557692308	1.163461538
Ratio to 25 mm "Hot" max SUV	1	0.874	0.726	0.543

Table 23: PET image contrast and scatter/attenuation correction evaluation (Pediatric Protocol)

	Background	Teflon	Air	"Cold" Water
Mean SUV	1.03	0.17	0.23	0.22
Minimum SUV	0.9	0.1	0.16	0.14
	25 mm "Hot"	16 mm "Hot"	12 mm "Hot"	8 mm "Hot"
Maximum SUV	2.32	2.14	1.6	1.07
Ratio to background mean SUV	2.252427184	2.077669903	1.553398058	1.038834951
Ratio to 25 mm "Hot" max SUV	1	0.922	0.690	0.461

Image Uniformity

☐ Purpose:

Evaluate uniformity of PET signal both within a slice and across slices of a uniform phantom.

☐ Materials:

Uniform cylindrical phantom (~20 cm)

FDG (~700 MBq)

☐ Procedure:

Acquire at two activity concentrations

Reconstruct with clinical settings

Draw 5 circular ROIs per slice and propagate axially

Slice N	ROI 12 O`clock	ROI 9 O`clock	ROI 6 O`clock	ROI 3 O`clock	ROI Center	Maximum	Minimum	Uniformity in Slice N	Absolute Value of Uniformity in Slice N
2	414.25	413.234	419.174	409.942	419.386	419.386	409.942	0.011387533	1.1
3	411.086	423.47	411.558	432.762	431.14	432.762	411.086	0.025687091	2.6
4	410.052	418.648	418.33	417.538	433.972	433.972	410.052	0.028340426	2.8
5	425.014	415.536	419.708	415.91	432.88	432.88	415.536	0.020442802	2.0
6	421.216	418.462	413.154	422.144	428.012	428.012	413.154	0.017663577	1.8
7	412.372	419.454	419.522	425.59	432.05	432.05	412.372	0.023303514	2.3
8	419.122	423.06	420.294	428.382	436.678	436.678	419.122	0.020514139	2.1
9	420.252	425.192	417.66	424.13	435.76	435.76	417.66	0.021208783	2.1
10	418.642	425.49	426.416	423.978	438.756	438.756	418.642	0.02345935	2.3
11	427.822	419.656	424.792	424.132	441.566	441.566	419.656	0.025440595	2.5
12	427.21	425.518	417.39	423.836	441.144	441.144	417.39	0.027668095	2.8
13	418.41	423.912	416.418	422.416	428.774	428.774	416.418	0.014619163	1.5
14	417.232	427.83	414.966	420.61	426.162	427.83	414.966	0.01526348	1.5
15	418.136	427.676	408.34	416.58	432.25	432.25	408.34	0.028444307	2.8
16	419.88	427.502	414.552	426.512	440.55	440.55	414.552	0.03040339	3.0
17	417.016	424.602	410.496	432.982	431.32	432.982	410.496	0.026658668	2.7
18	419.898	425.322	418.336	415.342	427.378	427.378	415.342	0.014282324	1.4
19	411.11	431.332	422.192	422.796	440.258	440.258	411.11	0.034236664	3.4
N-1 or 20	425.318	417.676	411.258	410.068	441.086	441.086	410.068	0.036442289	3.6
Maximum	427.822	431.332	426.416	432.982	441.566				
Minimum	410.052	413.234	408.34	409.942	419.386				
xial Uniformiyu Between Slices	0.021208439	0.021428757	0.021654232	0.027333425	0.02576218				m Absolute
bsolute Value of Axial Iniformitybetwe en Slice	2.1	2.1	2.2	2.7	2.6				Uniformity Slice
Maximu	m of Ahs	olute Av	vial Unif	armity	2.7				3.6

QUESTIONS?

THANK YOU