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Introduction




Corrections:
¢ scatter
« attenuation

Spiral CT
(1-8 min total)

Fused PET/CT

Whole-body PET
(6-40 min total)

Reconstruction:
« FORE + OSEM
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e diagnosis

e staging / restaging

* therapy monitoring

e treatment planning in clinical oncology




Activity concentration 1n tissue

SUV =

(Injected activity ) /(Body size)

BIOLOGICAL TECHNOLOGICAL

Element Description Element Description

PVE e scanner Malfunction and sensitivity.

Patient preparation Reconstruction algorithm

Tumor heterogeneity Filters Consider level of smoothing.

Tumor size Including leakage from nearby structures. Interobserver variability
Cell type Scan duration

Tumor avidity Sinogram noise
Other phenotype information [mage noise (_"'mr.'.'m'(’r the noise level as it is a cause of over half of all
SUV e variation.,

Treatment effectiveness . o
Measurement error Occurs in 30 % of SUV ., measurenents.

Patieni motion Between the PET and the CT scan. . o
Correct data entry 9 of 15 steps are constructed so that a technologist iy re-

Respiratory motion guired to measure, record and/or enier a value.

True tracer uptake Image reconstruction parameters Number of iterations when using IR, field of view (FOV),
number of subsets, voxel dimension, certain scanner spe-

Chemotherapy Disturbed renal function from chemotherapy can reduce
the FDG clearance.
Owverlap between malignant and benign diseases Difficulties in deciding the correct threshold.

cific enhancements, detector modeling and TOF,
Timing mismatch Between the scanner and the dose calibrator.

SUV varnability The variation is described to have a log-normal distribu-

Body size measurement . L
. tion rather than a normal distribution.

Mass correction Calibration errors According to the decay of the radio-pharmaceutical.

Blood glucose level Contrast material
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Basic Concepts




Image reconstruction -

L
o Projection p(s, @) at angle ¢, s is coordinate on detector
-~
Olbject
L]
-

[Detector

Projection s, ¢b) depends on orientation

Projection p(s) the same for any ¢ 10




Sinogram = collection of projections of a single slice

sinogram
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Find the image f(x.y) from the measured projections p(s, @)

We measure a sinogram: We want an image:
o o
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Object

Backprojection

Filtered
Backprojection

4 projections 16 projections 128 projections
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» |terative methods
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Scanner Detector 1

d In PET imaging, two 511 keV annihilation
photons are detected in coincidence by two
opposite detectors along a straight line, called

the line of response (LOR), So:

O Three steps in PET data acquisition:
1- Finding location of detector pair (PMT)
2- Analyze pulses using PHA (PMT) & CW Circuit

3- Sorting LOR positions in a "sinogram”, via 1 to 1
arrangement

Detector 2







Data Corrections




Attenuation

Random Coincidences
Scatter Coincidences
Parallax error

Time of flight (TOF)

20



1) Attenuation Correction

Attenuation correction P for each
pixel (i.e., each LOR) is given by:

P=¢Hy (}—ub _ (,—/.l(a-H))

Linear attenuation coefficients and
related thickness are derived from
CT imaging.

21




2) Random Coincidences

They create invalid spatial information & low contrast.
Randoms can equal or exceed true events number!

Reduced contrast
Reduced accuracy

22
True event Random event



By separately measuring two single count rates, R; and R,, of a radioactive
source by each of the detector pair, Random count rate is:

R, will be subtracted from the prompt (T+R+S) count rate

TWO coincidence circuits are employed

One is set at a standard coincidence timing window (e.g.12 ns)
the other at a delayed (e.g. 55 ns) time window (55-67 ns)

The counts in the standard time window: True + Scatter + Random
The counts in the delayed time window: Only random events

Assumption: Random counts will be the same in both coincidence and delayed
coincidence windows.
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3) Scatter Coincidences

Background of the image is increased by these radiations with
concomitant loss of image contrast and quantification accuracy.

But,.. What affects Scattering?

Density and depth of tissue, , Activity,

24



The weighted scatter counts are then subtracted
from the measured photopeak counts to obtain
the corrected counts for

ENERGY
WINDOW 511 keV PHOTONS

SCATTER

This technique increases data processing time
and the noise in the image. N

Triple window technique has been employed
using two overlapping low energy windows
with a common upper energy level just below
the photopeak window. e

° ° Scatter :
This technique has reasonable success.

Energy (keV)

25



Theoretical models in which (after random
corrections), Guassian or parabolic fit is
applied to the scatter distribution outside
the photopeak, then extrapolated to estimate
the scatter contribution under the photopeak.

d It works well in 2D PET Brain studies

O It is inaccurate in areas of high attenuation
(e.g. thorax with arms down)

26



Convolution method in which a scatter function is
measured from a point source. Then it convolves

with source distribution to estimate the scatter data
O It takes the scatter dependence on the position

O It is Computationally efficient

emission
image

Monte Qarlo ba_lsed =
Monte Carlo method in which each interaction of [
photon in the patient and its detection in the block

detector is traced in a simulation process.

This method does not take into account scatter from i
outside the source. o




We may see artifacts in scatter correction especially low
adjacent activity areas around high activity concentrations
overcorrects and make a photopenic area.
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4) Parallax error (Radial Elongation- Radial Astigmatism)

Crystals Crystals

0% 15% 70% 15% 0% 15% 50% 20% 15% 0%

(Center of FOV) Away from Center of FOV

X, Y positioning of the detectors is defined by the dashed line some distance d away from
the actual LOR. This effect results in some blurring of the image due to unknown depth of
interactions, and worsens with the LORs farther away from the center and with a thicker

detector.

29



We know that Point Spread Function
(PSF) describes response of imaging
system to a point source.

A system that knows the response of a
point source from everywhere in its field
of view can use this information

to recover the original shape and form of
imaged objects.

System corrects the LOR because of a
better understanding of the PSF!

Robot to measure PSF

30
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5) Time of Flight (TOF) -

definition of the position of annihilation along the line of annihilation _
using the measured difference in arrival times

Conventional Time-of-Flight

Detector

Mo dule

KV



Conventional

At = 300 ps

C. At B 3 x 10/\10cm/s * 300 « 10" 12
2 2

9
- Ax = =E=4.5cm
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No localization along  650ps TOF timing TOF accuracy TOF accuracy now

the line of response resolution proved to 575ps improved to 495ps

In a perfect TOF-PET system (TOF resolution— ~0) image reconstruction
would not become necessary!
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FEltfects of Image

Reconstruction Parameters on
PET Images




0 Visual assessment and image quality

o Quantification and harmonization




Iteration x subsets




Post-smoothing filter

No Filter 8 mm Gauss ‘\ 15 mm Gauss
. -

3 mm Gauss 10 mm Gauss 20 mm Gauss

g
>

:

5 mm Gauss

which one is

the good one?
38




Post-smoothing filter

FIG. 2.15. Coronal FDG-PET image following post-reconstruction filters of 3 mmrrar; v




Image matrix size

h .
Matrix size SUW s
49
SIrict
Cre

64
5.5

128
5.1

256




Point Spread Function (PSF)

PSF methods are
9 available from vendors
SUV yean = 19(SD = 0.3) SUV,ean = 19 (SD =0.3) under dlffer-en-‘- names
(TrueX from Siemens,
SharpIR from GE and

Astonish from Philips)

3

SUVgean = 2.2(SD =0.4) SUV, e = 2.2 (SD = 0.4)

FIG. 2.18. Whole body PET image of two patients (top and bottom) reconstructed without (left) and with (right) point spread function

SD: standard deviation: SUV: standardized uptake value
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Effects of reconstruction parameters on -
PET image quantification

Kelly , 2011, EJNMMI Research
Sunderland , 2015, JNM

Tsutsui , 2017, AOJNMB

Armstrong , 2017, Nuclear Medicine Communication

Bing Bai , 2011, IEEE

 Evaluation of various FWHM of Gaussian filter with
different reconstruction sets on SUV in multicenter

studies

» Using advanced reconstruction algorithms (PSF/TOF)

overestimate the SUVmax == edge artifact

Appropriate FWHM of Gaussian filter

9 EINMMI Research
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No-PSF vs. PSF

Edge Artifact

« Image reconstruction with PSF is
associated with edge artifacts (Politte
No-PSF, SUV, ., | & Snyder 1988)

Edge artifact due to PSF.

No edge artifact with No-PSF.
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Harmonization

Recovery
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Recovery.eq




1. Technical factors:
calibration between PET scanner and dose calibrator, residual activity in syringue after injection or
paravenous injection, synchronization of clocks of PET scanner and dose calibrator

v

2. Biological factors :
blood glucose level, uptake period, patient discomfort, inflammation, patient motion
and/or breathing

v

Eur J Nucl Med Mol Imaging (2017) 44 (Suppl 1):817-531 @ CrossMark
DOI 10.1007/500259-017-3740-2

can acquisition paramete
for SUV,

image reconstruction parameters, ROl definition, normalization factor
= rasragoneToeseg fevel correction

r{ 3. thsncal factors:

v

E Harmonization methods regarding reconstruction variability |

Phantom study OSEM

——0OSEM
—PSF
—PSFeanm

Recovery coefficients for max value

Spheres diameters (mm)
Determining the optimal filter to be applied for harmonized quantification

EQ-PET EARL
1 dataset : PSF 2 datasets : PSF and PSF¢anm

Harmonized quantification = PSFgq Harmonized quantification = PSF gy

REVIEW ARTICLE

EANM/EARL harmonization strategies in PET quantification:
from daily practice to multicentre oncological studies

Nicolas Aide'?( « Charline Lasnon” « Patrick Veit-Haibach*® « Terez Sera®
Bernhard Sattler” - Ronald Boellaard®’

Received: 19 April 2017 / Accepted: 24 April 2017 /Published online: 16 June 2017
C) The Author(s) 2017. This article is an open access publication

PSF+TOF
SULpax= 47.0
SUL o= 29.6
SULmaxEQ =29.1
SULpeakea=24.7

SUL pyax= 28.1
SULpeak= 23.9

- pre treatment PET '

SULpax= 46.6

SULpeay = 33.3
Su.ma, =338 SULmaxEO =34.3
SULpeak = 27.8 SULpeakeq = 28.2

' post treatment PET

EORTC PERCIST
OSEMpey /PSF4TOFpgr,  +65.8% (PMD +39.3% (PMD)

Standard of reference ) ‘ Py
OSEMpg,/OSEMpgr, PSF+TOFper/OSEMper, 28.1% (PMR 6.1% (SMD)

EORTC : + 20.3% (SMD) PSF+TOF.EQpgr{/OSEMpgyr, + 16.2% (SMD +12.6 % (SMD)
PERCIST : +16.3% (SMD) OSEMper,/PSF+TOF.EQper, +22.1% (SMD +18.0 % (SMD)




Multi-center QC and calibration

+ Calibration QC specification:
» maximum allowable calibration deviation = + or — 10%
(global)

* SUV recovery specifications:
+ for SUVmax (focus —as SUVmax is used clinically!)
+ for SUVmean

Realistic/EARL ligher

necessarily
‘better’
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o Variations due to the performance of PET/CT systems

are reduced when RCs are within the acceptable EARL
range. Multicentre analysis of PET SUV using @

vendor-neutral software: the Japanese
Harmonization Technology (J-Hart) study

N——
Qshi Cimasss

o Feasibility of harmonization and provision of new
reference criteria to achieve higher RCs

L . ] S tion
o Modification of reconstruction protocols by applying | s image Re"%“pngufw‘\R\

im
appropriate FWHM of Gaussian filter brings RCs values of arrnon ation Oiﬁﬂ‘mu\taneau
different scanners closer together €

o Increasing Reproducibility and Repeatability




» Quant Imaging Med Surg. 2023 Feb 8;13(4):2218-2233. doi: 10.21037/qims-22-443 (4

Multicenter quantitative '8F-fluorodeoxyglucose positron emission
tomography performance harmonization: use of hottest voxels towards
more robust quantification

Habibeh Vosoughi ", Mehdi Momennezhad 2, Farshad Emami 3, Mohsen Hajizadeh ¢, Arman Rahmim *°, Parham

Geramifar 8"
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Commercial Options
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Healthineers -

» Reconstruction Algorithms:
3D-OSEM

TrueX (HD)

TrueX + TOF (ultra-HD)

»+ Scatter correction methods:
relative, absolute, WB relative, WB absolute

- Filters: Gaussian , Butterworth




PET/SPECT Segmentation Properties 7 X

Display the following evaluations on PET/SPECT data
v Max (Maximum
v Max. eq (Maximum Equivalent)
Peak (Highest average 1cm3 sphera)
Peak.eq (Highest average 1cm3 sphere equivalent
Mean (Average
Mean.eq (Average Equivalent)
3D (Standard Deviation)
SD.eq (Standard Deviation Equivalent
Min (Minimum)
Volume

Thresh (Threshold of YOI Max)

Ccancel

« Quantification Parameters

S+ Male Female

Height cm
Weight 10 kg

Bofope: [-18 -

Hall-kfe: 109,77 Minules

Dose: 19 56 WMBg

injection DateMime: 27/11/2013

EQ Fiter: 5 5|

Reference Regions

17:40:00

¥y




- N [ .
GE Healthcare

* Reconstruction Algorithms:

FORE-FBP (Fourier REbinning - Filtered Back Projection)
Filters: Hanning, Shepp-Logan, Rectangle, Butterworth

SharpIR
VUE Point HD (VPHD) - iterative/OSEM B

VUE Point FX (VPFX) - use TOF

Q.Clear - full convergence while maintaining acceptable image quality
, use Bayesian Penalized Likelihood (BPL) algorithm =



-4 § 459801904271 _C

Reconstruction Protocols:
BOdy Smooth/Sharp

Consists of four user-selectable Gaussian post-filter options with

Bo dy_ E A RL increasing levels of filtering/smoothing (as shown in the table below):

* Normal

* Smooth (default)

- Filters: Gaussian I ET,EZI::
I I R N B
+ PSF (point spread function)

Using Richardson-Lucy algorithm which is iterative.
For control of noise = use regularization (Sieve-kernel (FWHM))

PHILIPS

The default PSF parameters are:
» PSF Iterations = 1

* PSF Regularization = 6 mm

58



Challenging Area




1. Correction Challenges -
(especially for whole-body dynamic scans) is still very "
imperfect. -

is never 100% accurate. Especially in low-count
regions, or at edges (lung/liver interfaces, for example), scatter
estimation errors propagate badly.

errors from CT mismatches or MR-based
estimation (in PET/MR) are still a big source of bias.

(PVE correction) remains an issue, especially for
very small lesions.

60



. . __

2. Reconstruction Algorithm Development
-
intfegration is strong now, but there are -

opportunities to push TOF resolution better or exploit it more cleverly.

(penalizing noise without blurring detail) — finding new
priors for MAP (maximum a posteriori) reconstruction is an active area.

is popular but still faces
issues with generalization and trust (artifact hallucination risk).
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3. AI/Deep Learning Application

(e.g., skipping traditional iterative
reconstruction and letting a network learn it all) is promising but unstable
and risky for clinical trust.

— networks that respect PET physics
rather than just doing black-box prediction — are a growing but challenging
field.

(e.g., 1% of standard dose) with deep
learning denoising or reconstruction is very active but still not perfect.

— AT reconstructions often look good, but how
do you know if a result is reliable? This is a hot topic.

62



4. Novel Applications/Problems -

harder and often still "

relies on simplifying assumptions (like simple kinetic models). New .
models, AT acceleration for parametric imaging, or better noise handling

could be huge. .

(like the EXPLORER scanner) opens new reconstruction -

challenges because of enormous data volume and new motion patterns.

(imaging two tracers at once) needs very sophisticated
reconstruction algorithms to untangle signals.
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Topic
Uncertainty Maps for AI-Reconstructed PET
Al-Enhanced Scatter Correction
Parametric PET Imaging Acceleration
Motion Correction Whole-Body PET
Low-Dose AI PET Reconstruction

Total-Body PET Fast Reconstruction

Novelty (2025)
L 2. 0. 8 &
Yook kI
. B 0 B*e 1
ok KT
%k Y7 I7 37
LB & & 1

Practical Impact
8.0 8 B+

L 8.6 8 &
% ok ok
ok Wk ok
L B 6 8 §*¢
% % ¥r¥r v (1f no data access)
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