The Role of Nuclear Medicine in Liver Transplantation

Borzou Rashidi, MD

Nuclear Medicine Physician

Chief of Nuclear medicine department, Firozgar Hospital, IUMS

Assistant professor of Nuclear Medicine, AUMS

INTRODUCTION

The Ancient Perspective on Liver Regeneration

According to *Greek* mythology, **Prometheus** was punished by having his liver eaten daily by an eagle — and each day, the liver regenerated.

This highlights an early understanding of the liver's unique regenerative ability, a concept central to modern liver transplantation.

Liver transplant procedures in word

- Orthotopic liver transplantation (OLT) has been performed since 1967
- 2021: >9,000 liver transplants performed in the USA alone.
- 1-year survival rate: ~80%;
- 5-year survival rate: ~70%.
- The longest surviving recipient has lived >25 years post-transplant.

Liver Transplantation in Iran

- First liver transplant in Iran performed at <u>Shiraz</u> Organ Transplant Center (SOTC) in **1993**.
- Between 1993–2015:
 - 3,191 liver transplants performed from 3,110 donors.

Survival Rates:

• 1-year: 84%

• 5-year: 80%

• 10-year: 73%

Improved outcomes over time:

- Era I (1993–2005) vs Era II (2006–2015)
- 10-year survival increased from 60% to 78%.

Role of Nuclear Medicine in Preoperative Evaluation

Preoperative Work-up for Liver Transplantation

Cardiac Evaluation:

- MUGA scan for left ventricular ejection fraction.
- Stress Thallium or Adenosine testing for coronary artery disease.

Cancer Screening:

- Whole-body bone scan for metastases (especially in hepatocellular carcinoma).
- PET/CT scan: metastasis evaluatin

Pulmonary Evaluation:

Ventilation-Perfusion (V/Q) scan for hepatopulmonary syndrome diagnosis.

Liver Assessment:

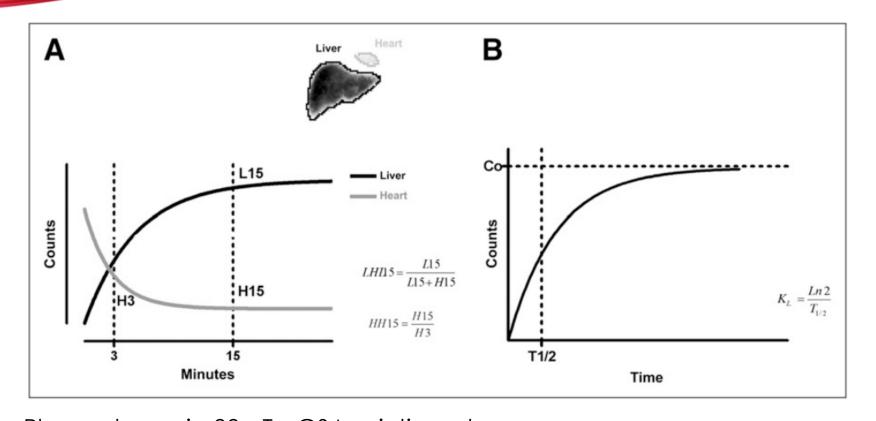
Tc-99m-GSA and HBS

Functional Reserve Evaluation in Donor

- Graft viability depends on hepatocellular function
- Size determination alone by CT scan (volumetric) not reliable in cirrhotic livers.
- Tc-99m-DTPA-GSA and HBS (hepatobiliary scan) allow functional estimation
- Helps determine resectability or transplant candidacy

Tc-99m-GSA Scintigraphy

- It Binds to asialoglycoprotein receptors on hepatocytes
- Provides:
 - 1. LHL15 (hepatic uptake)
 - 2. HH15 (blood clearance)
- Advantages: Objective, reproducible, noninvasive method


Quantitative Imaging – GSA Indices

- LHL 15: Liver to heart ratio at 15 min
- **HH15**: Heart retention at 15 min
- High LHL15 (>0.9) / Low HH15 → Good Hepatic function
- Can guide <u>timing of surgery</u> or <u>listing</u>

Tc-99m-GSA Clinical Application

- Used pre-transplant to assess remnant liver function in donor
- Influences transplant candidacy and surgical approach
- Particularly useful in cirrhotics or small-for-size liver in donors.

Planar dynamic 99mTc-GSA scintigraphy.

(A)LHL15 and HH15 are calculated from 99mTc-GSA time—activity curves from heart (gray) and liver (black).

(B) Blood clearance constant (KL) is calculated from liver uptake curve using clearance half-time (T1/2)

Living Donor Transplants

- Small-for-size syndrome risk
- GSA scintigraphy critical for graft sizing
- Avoids postoperative liver failure
- Common in Asia + increasingly in Western centres

Hepatobiliary Scintigraphy (HBS)

- Radiotracer: Tc-99m mebrofenin or HIDA analogues
- Assesses: hepatocyte uptake, biliary excretion, transit times
- Quick, bedside-compatible, dynamic phase is useful.

HBS Pre-Transplant Utility in recipient

- Identifies delayed uptake = hepatocellular dysfunction
- Delayed excretion = cholestasis or bile flow impairment
- Assists in MELD exception decisions.
- Dynamic uptake curves can be quantified

When to Use GSA vs HBS

GSA (Tc-99m-GSA)

Receptor binding

Hepatobiliary flow

Quantitative reserve

Leak/obstruction

Pre-op, graft viability

Post-op, biliary issues

Combining both enhances diagnostic accuracy

Semi-Quantitative Functional Assessment

Dynamic HBS provides semi-quantitative evaluation of liver function.

Key parameters:

- Hepatocyte Extraction Fraction (HEF) by deconvolution analysis
- Excretion half-time (T_{1/2}) using nonlinear least squares fitting

Semi-QuantitativeHepatic Functional Assessment

Interpretation:

- In hepatocellular dysfunction:
 - HEF decreases
 - T1/2 excretion time increases
- In biliary disease:
 - T1/2 excretion time increases
 - HEF remains normal

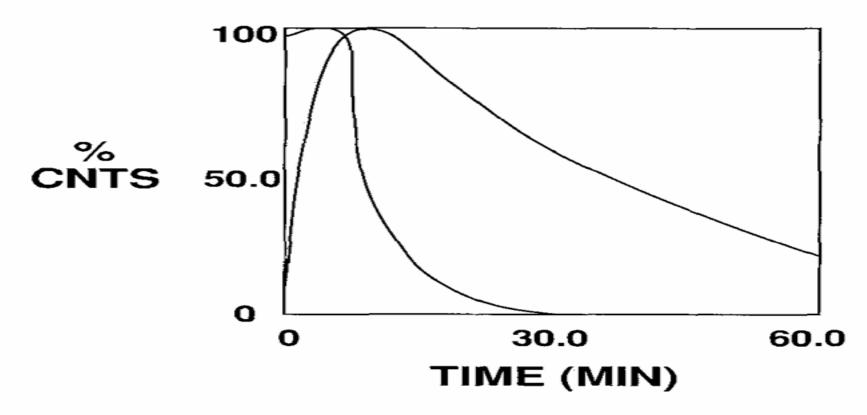
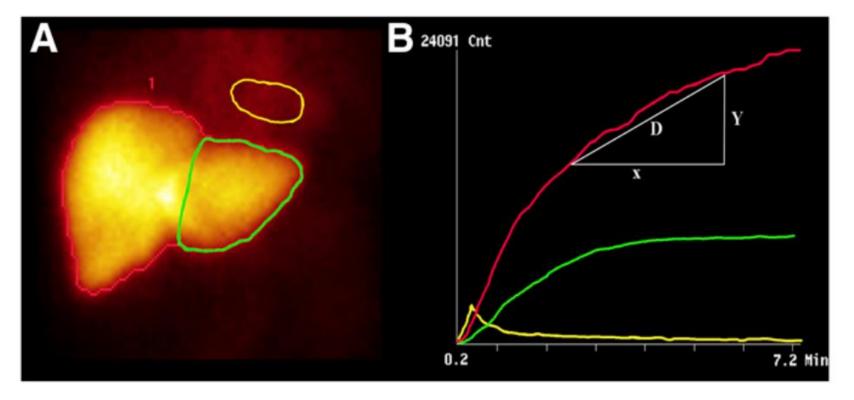
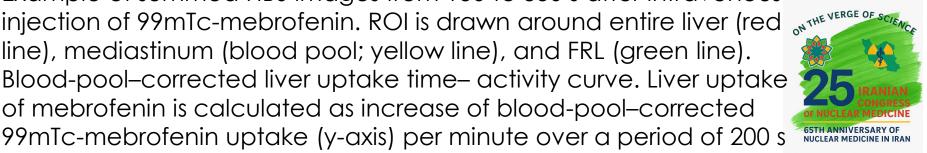




Fig 11. Quantitative hepatobiliary scintigraphy in three showing normal hepatocyte extraction fraction (HEF) and $T\frac{1}{2}$ excretion. (Courtesy of Dr Eva Dubovsky.)

Dynamic image of planar HBS

(A) Example of summed HBS images from 150 to 350 s after intravenous injection of 99mTc-mebrofenin. ROI is drawn around entire liver (red line), mediastinum (blood pool; yellow line), and FRL (green line). (B) Blood-pool-corrected liver uptake time- activity curve. Liver uptake of mebrofenin is calculated as increase of blood-pool-corrected

Hepatic Blood Flow Quantitative Studies

Quantitative studies help assess hepatic perfusion and function in transplant candidates.

Essential Nuclear medicine techniques:

- Tc-99m sulfur colloid scintigraphy:
 - Measures total hepatic blood flow.
- Tc-99m DTPA –GSA:
 - Evaluates venous and portal blood flow extraction fractions.
- Tc-99m DISIDA
 - Assesses hepatocyte extraction efficiency.

Quantitative Hepatic Blood Flow Studies

Interpretation:

- DISIDA extraction efficiency < 0.68 suggests
 - hepatocellular dysfunction.
- Portal blood flow fraction >0.64 supports
 - hepatocellular injury without rejection.
- Portal blood flow fraction <0.65 predicts
 - > graft rejection.

Post-Transplant Complications

Post-Transplant Complications

based on etiology:

- <u>Surgical complications</u>: vascular, biliary, and parenchymal issues
- Graft-related complications: primary non-function, acute or chronic rejection
- Infectious complications: bacterial, fungal, and viral infections
- <u>Neoplastic complications</u>: de novo malignancies, posttransplant lymphoproliferative disorder (PTLD)

Post-Transplant Complications

based on timing:

- <u>Early complications</u>: occurring within the <u>first 6 months</u> post-transplant
- <u>Late complications</u>: occurring <u>after 6 months</u>

Vascular Complications After Liver Transplantation

Key vascular complications:

- Hepatic artery thrombosis (HAT):
 - The most serious vascular complication.
 - <u>Incidence</u>: approximately **15%** in adults and 12% in children.
 - High risk of graft loss and mortality if not promptly diagnosed and managed.
 - Best detected using Doppler ultrasound imaging.
- Portal vein thrombosis:
 - Incidence: approximately 9%.
 - Associated with increased risk of graft dysfunction and re-transplantation.

Other vascular issues:

- Hepatic artery stenosis
- Venous outflow obstruction
- Development of pseudoaneurysms

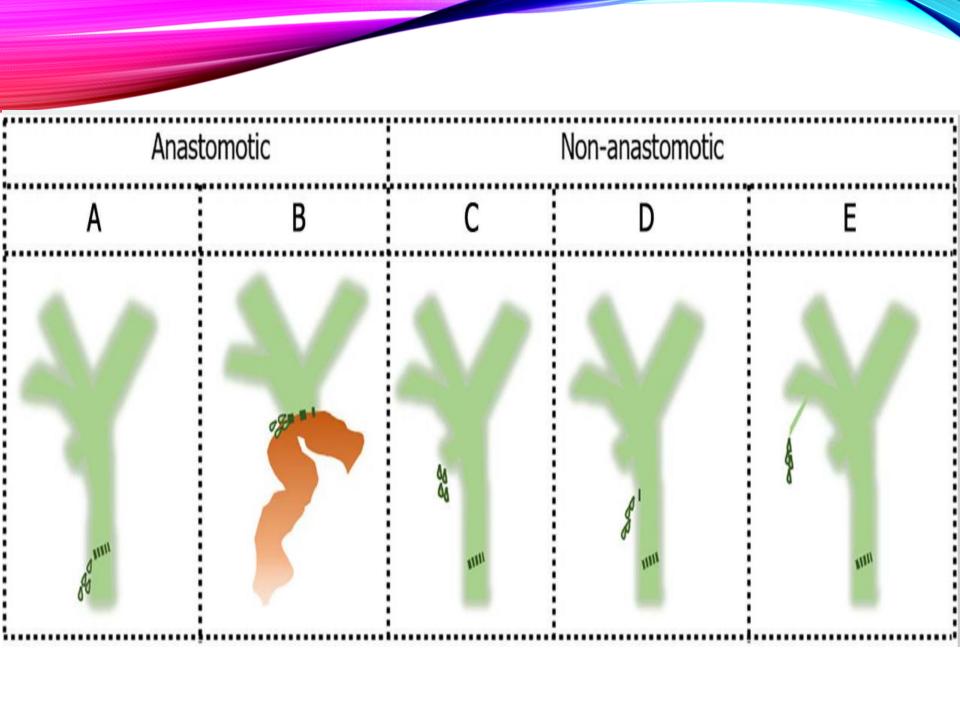
Biliary Complications After Liver Transplantation

Occurring in 10–25% of recipients.

Types of biliary complications:

- Bile leaks:
 - Typically an early complication, often within the <u>first few weeks</u>.
- Anastomotic strictures:
 - Typically a late complication occurring months to years after transplant.
- Non-anastomotic strictures:
 - Associated with ischemia (ischemic cholangiopathy).
- Biloma formation:
 - Encapsulated bile collection due to leakage.
- Biliary stones or sludge formation.
- Sphincter of Oddi dysfunction.

Timing and Types of Biliary Complications


Early biliary complications

- Bile leaks
- Early anastomotic strictures
- Biloma formation

Late biliary complications:

- Late anastomotic strictures
- Non-anastomotic strictures (ischemic cholangiopathy)
- Biliary stones or sludge
- Sphincter of Oddi dysfunction

Diagnostic Approaches for Bile Leak

Invasive techniques:

- ERCP
 - Gold standard for diagnosis and therapeutic intervention.
 - Risks include pancreatitis, perforation, and infection.
- PTC
 - Used when ERCP fails or is not feasible.
 - Risks include bleeding, bile leakage, and infection.

Non-invasive techniques:

- MRCP
 - Provides a detailed anatomic view of the biliary system.
 - High sensitivity and specificity for strictures and obstruction.
- Hepatobiliary scintigraphy (HIDA scan):
 - Functional imaging to dynamically detect active bile leaks.
 - Highly sensitive even for subtle or early leaks.

Nuclear Medicine in Post-Transplant Evaluation

Early Post-Transplant Imaging

- High risk period: first 7 days post-op
- Common complications:
 - Hepatic artery thrombosis,
 - Biliary leak,
 - Poor graft function
- Imaging = early detection → graft salvage

Functional Imaging in Immediate Post-Op

- Nuclear techniques:
 - Perfusion imaging (GSA)
 - Hepatobiliary scintigraphy (HBS)
- Detect functional failure before lab changes
- SPECT and planar studies both useful

Hepatic Artery Thrombosis

- Most feared early complication
- Risk: ischaemia, infarction, graft failure, mortality
- HBS shows segmental absence of uptake
 Use in conjunction with Doppler US

Graft Dysfunction

• Differentials:

- Acute rejection
- Ischemic injury
- Drug toxicity
- Labs often inconclusive
- Imaging offers early insight

Deconvolution Analysis in Graft Dysfunction

- Used in HIDA, Tc-99m-GSA
- Useful when lab tests are ambiguous
- Scan Finding:
 - Hepatic Extraction Fraction (HEF)
 - T1/2 clearance
- Helps <u>avoid unnecessary biopsy</u>
- Improves specificity for dysfunction vs obstruction

HIDA Scan in Bile Leak Detection

- <u>Normal</u>: Radiotracer moves from liver → bile ducts → small intestine.
- <u>Bile leak</u>: Radiotracer extravasation outside the biliary tree into peritoneal or perihepatic spaces.

Advantages:

- High sensitivity for detecting active leaks.
- Can detect <u>small leaks</u> missed by MRCP or ERCP.
- Dynamic and functional imaging, not just anatomic.

Limitations:

- Planar imaging alone has <u>limited anatomic detail.</u>
 - Better localization with SPECT views

Planar Imaging vs SPECT/CT in HIDA Scintigraphy

SPECT/CT imaging:

- Improves localisation and characterization of bile leaks.
- Increases diagnostic accuracy: 65.6% vs 96.8%

Current recommendation:

 Whenever available, SPECT/CT should be performed along with planar imaging to improve bile leak detection and localization.

HIDA Scan Main features for Bile Leak

- Early phase (0–30 minutes): Normal hepatic uptake and excretion into bile ducts and small bowel.
- Detection of bile leak:
 - Appearance of radiotracer outside the expected biliary tract.
 - Progressive accumulation in perihepatic, subhepatic, or peritoneal spaces.
- Delayed imaging (up to 4–6 hours) is often necessary for detecting small or slow leaks.

HIDA Scan Interpretation tips

- Early dynamic imaging improves sensitivity.
- Delayed imaging helps confirm slow leaks.
- Always correlate imaging findings with clinical signs (e.g., bilious drain output, rising bilirubin).

Free-flow Bile Leak vs Biloma on HIDA Scan

Free-flow leak:

- Radiotracer <u>spreads diffusely</u> within the peritoneal cavity.
- Accumulates along natural peritoneal recesses, such as:
 - Right paracolic gutter
 - Morison's pouch
 - Pelvic cavity

Free-flow Bile Leak vs Biloma on HIDA Scan

Biloma (encapsulated bile collection):

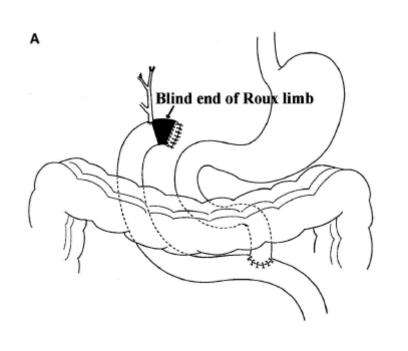
- Radiotracer accumulates in a localized, wellcircumscribed area.
- No diffuse spread to other peritoneal spaces.
- May fill slowly on delayed images.

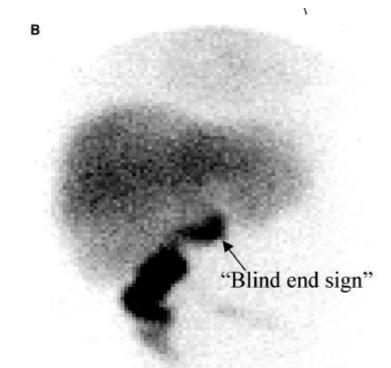
Limitations and Pitfalls in HIDA Scan Interpretation

Potential limitations and pitfalls:

- Very small or clinically insignificant leaks may be missed.
- Other fluid collections (ascites, hematoma, seroma, urine leak) may mimic bile leak.
- Bowel activity can cause false positives if misinterpreted.

Strategies for better Interpretation:


- Dynamic (cinematic) review is essential bile leaks increase in intensity while bowel activity moves distally.
- SPECT/CT helps clarify uncertain cases by providing exact anatomical correlation.
- Delayed imaging improves detection of subtle leaks. on THE VERGE OF


Differentiating Leak vs Blind End

- True bile leak = constant shape, irregular
- Blind end = fluctuates, tubular, bowel-sized
- Delayed images is essential & avoid false positive diagnosis

The Blind End Sign – Schematic and Real Case

The "blind end sign" shown schematically (A, shaded area) and on a single image from a dynamic hepatobiliary scan (B).

Functional Assessment of Liver Graft Using Hepatobiliary Scintigraphy

- Beyond detecting leaks: dynamic evaluation of graft function.
- Parameters analysed from deconvolution analysis:
 - Hepatocyte Extraction Fraction (HEF)
 - Excretion half-time (T½).
- Interpretation:
 - Normal graft: high HEF, normal T½.
 - **Dysfunctional graft** (ischemia, rejection, cholestasis): reduced HEF, prolonged T½.

Normal HBS in Transplanted Liver

Fig 9. Quantitative hepatobiliary scintigraphy showing normal hepatocyte extraction fraction (HEF) and T1/2 excretion. (Courtesy of Dr Eva Dubovsky).

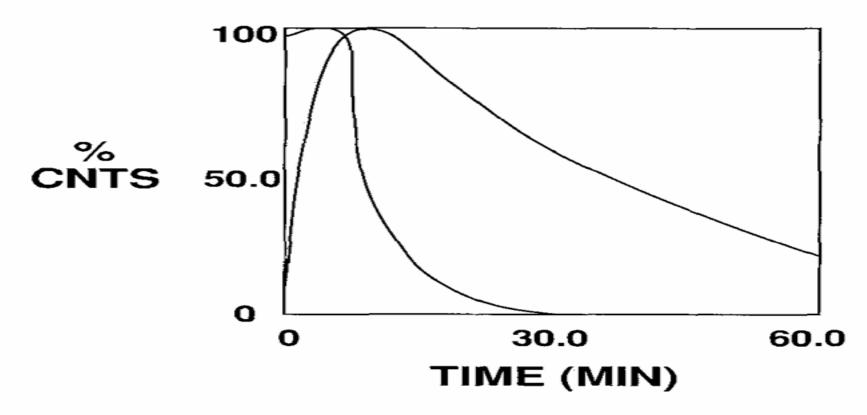
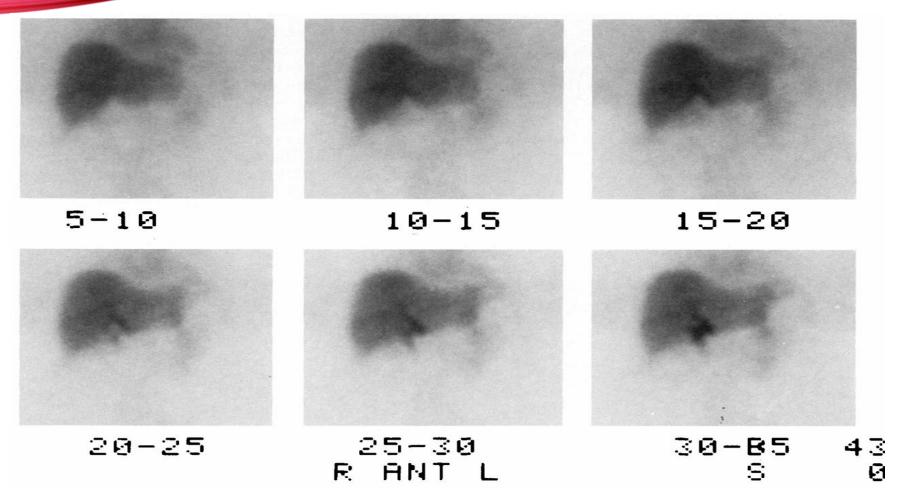



Fig 11. Quantitative hepatobiliary scintigraphy in three showing normal hepatocyte extraction fraction (HEF) and $T\frac{1}{2}$ excretion. (Courtesy of Dr Eva Dubovsky.)

Quantitative hepatobiliary scintigraphy showing **poor hepatocyte extraction fraction** (HEF) and **delayed T**½ **excretion** in biopsy proven **acute rejection**. (Courtesy of Dr Eva Dubovsky.)

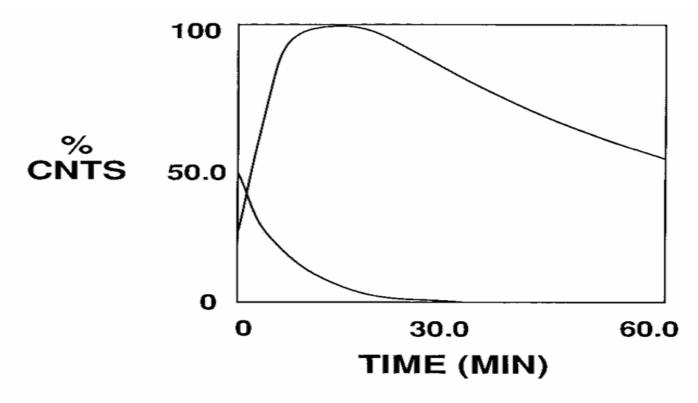
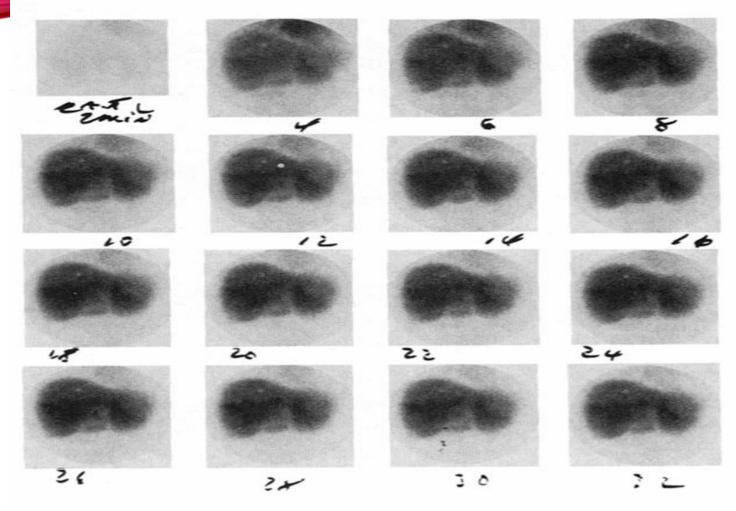
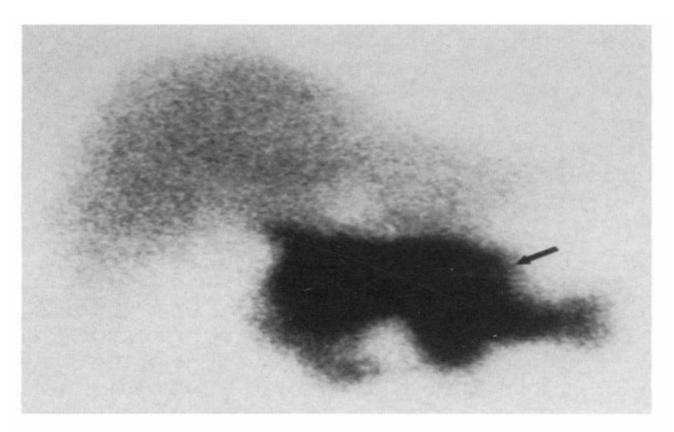
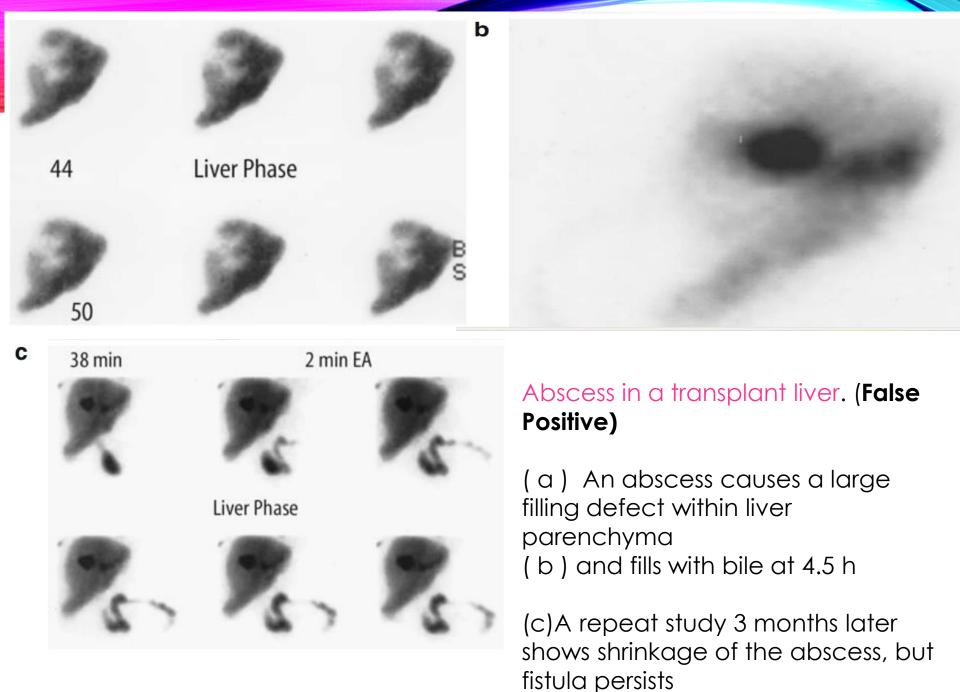
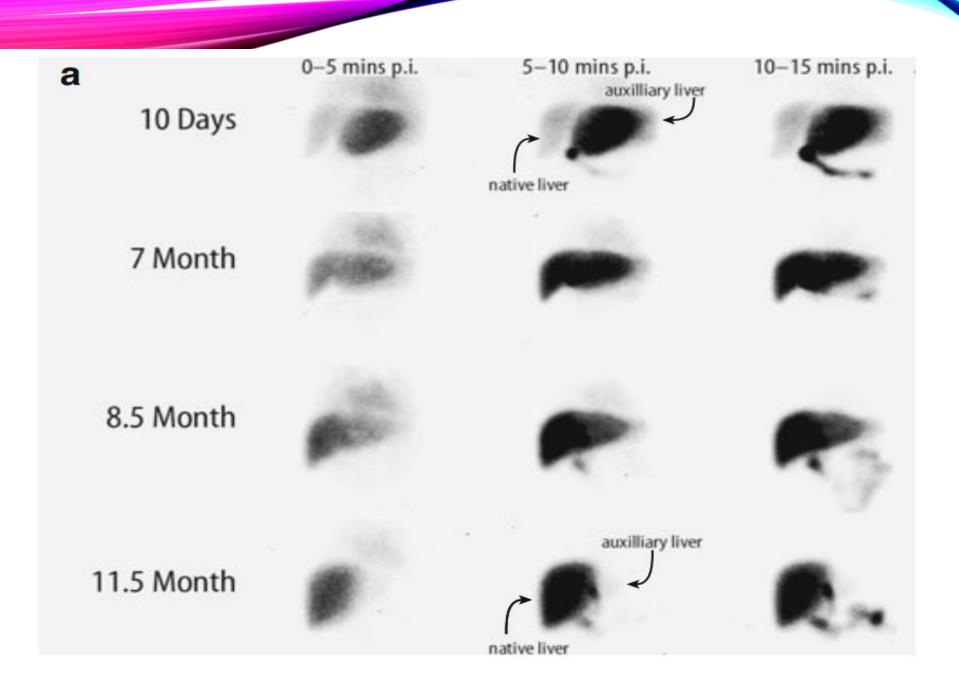
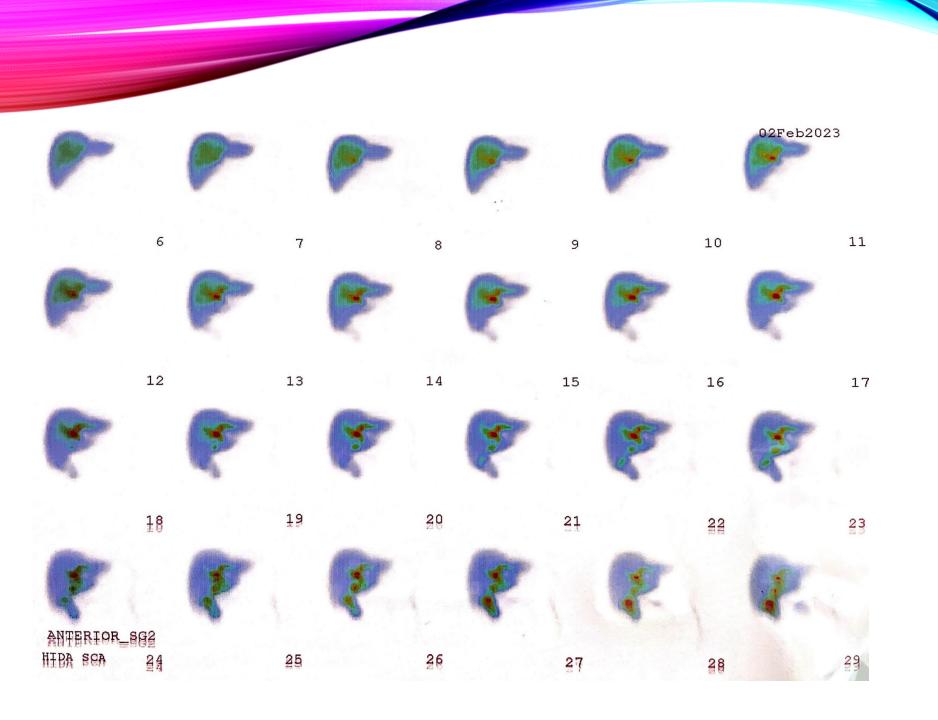
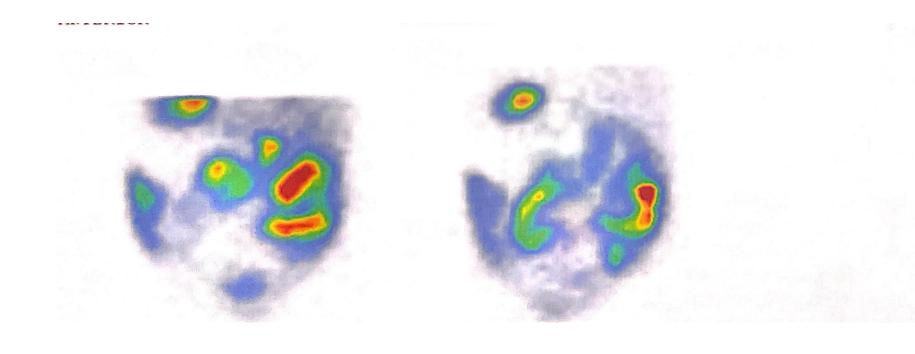



Fig 14. Quantitative hepatobiliary scintigraphy showing poor hepatocyte extraction fraction (HEF) and delayed T½ excretion in a biopsy proven acute rejection. (Courtesy of Dr Eva Dubovsky.)

Quantitative hepatobiliary scintigraphy showing poor hepatocyte extraction fraction (HEF) and **markedly delayed T½ excretion** suggestive of **high-grade obstruction** confirmed by cholangiography.


Fig 3. Hepatobiliary scintigraphy showing accumulation of tracer in the left subhepatic space (solid arrow) in a 49-year-old man 6 days after liver transplant.



Case Report (Firouzgar Hospital)

- 16-year-old female, day 7 post-orthotopic liver transplantation
- Clinical Suspicion for biliary leak.
- CT scan: Biloma or Infectious Hematoma

Anterior View, Delayed

2 Hrs 6 Hrs

Newer Trends

Theranostics in Liver Transplantation

- Combines diagnosis + therapy
- Common in HCC:
 - Y-90 radioembolization (SIRT)
 - FDG-PET (confirming tumour control)
- Bridges patients to transplant
- Used for downstaging tumors to meet transplant criteria

PET in Liver Transplant Oncology

- FDG-PET for guiding transplant eligibility:
 - Excluding extrahepatic metastases
 - Assessing tumour response
- Better risk stratification in borderline cases

Summary and Key Takeaways

- Biliary complications, particularly bile leaks, remain a major cause of morbidity post-transplant.
- Early detection of bile leaks is critical to prevent graft loss and improve outcomes.
- Hepatobiliary scintigraphy (**HIDA** scan) is a <u>highly</u> sensitive, <u>dynamic tool</u> for identifying bile leaks.
- Nuclear medicine plays a vital role in both preoperative evaluation and postoperative management of liver transplant patients.

Clinical Practice Recommendations

- Use GSA scans in pre-op functional reserve estimation
- Deploy HIDA or Mebrofenin HBS <u>early in post-op</u> period
- Train teams to recognise blind end vs true bil leaks

Thank You

